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Abstract

Let L be a free Lie algebra over a field &, I a non-trivial proper ideal of L, »> 1 an integer.
The multiplicator H2(L/I",k) of L/I" is not finitely generated, and so in particular, L/I" is not
finitely presented, even when L/I is finite dimensional. © 1998 Elsevier Science B.V. All rights
reserved.

1991 Math. Subj. Class.: Primary 17B55; secondary 20F05

1. Introduction

If R is a free associative algebra, over a field, and 7 is a two-sided ideal of R, then
Lewin [5] proved that I? is not finitely generated (as a two-sided ideal!) when the
algebra R/I is infinite dimensional. In other words, R/I? is not finitely presented in this
case. On the other hand, it is easy to see that when R is finitely generated and R/I is
finite dimensional, so is R/I?, and hence /7 is finitely generated.

Similar behavior is seen in groups. If F is a finitely generated free group, and R is
a normal subgroup, then R’ is normally finitely generated if, and only if, F/R is finite.
In fact, Baumslag et al. proved [1] a stronger fact. Denoting the mth member of the
lower central series by 7, they proved that for m > 1 the Schur multiplier of F/y,R,
Hy(F/yR,Z), is not finitely generated (as an abelian group) if F/R is not finite.

We note that for the three statements,

(a) R is normally finitely generated,

(b) R/R' is finitely generated as a module over G = F/R,

(c) H2(G,Z) is finitely generated as an abelian group
we have (a) = (b) = (c).
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In this paper we prove a result of similar nature for Lie algebras.

Theorem 1.1. Let L be a free Lie algebra with basis X, over a field k, and I be any
non-zero proper ideal of L; then I' = [I,I] is not finitely generated as an ideal. In
fact, the “Schur multiplier” of L/I", H,(L/I", k), is not finitely generated if n > 1,
and hence L/I" is not finitely presented.

Here I" denotes I, if n = 1, and [["~!, I] if n > 1. Our proof closely follows the
lines of [1].

In Section 2 we define some notations and the Magnus embedding. In Section 3
we build a mapping from the Schur multiplier into a tensor product of n — 1 copies
of U(L/I). This is similar to the mapping defined in [1]. In Section 4 we build a
specific isomorphism of Hopf modules, keeping in mind that the enveloping algebra
of a Lie algebra is a Hopf algebra. In Section 5 we employ the mapping and show
that the image of the “Schur multiplicator” is not finite dimensional, thus proving the
theorem.

2. Preliminaries and notations

Let ¥ be a Lie algebra. We will denote the Lie multiplication of two elements
a,b € % by [a,b]. As we will also be considering the enveloping algebra of &, the
multiplication in U(%) will be denoted simply as ab, while the action of an element
[ € U(%) on an element a € ¢ will be denoted by a-/. Note that the action is the
adjoint action, so that if / € L then a-/ =[a,/].

Let 4 be a Lie algebra over a field £, U(9) its enveloping algebra, 6U(%) the
augmentation ideal of U. Suppose 0 -/ - L — % — 0 is a free presentation of ¥,
where L is the free Lie algebra with basis X. The enveloping algebra, U(L), is therefore
a free associative algebra, with basis X, and 6U(L) is a free U(L) module, with a basis
in one-to-one correspondence with X. Note that over a field, if ¥ # 0, U(%) is infinite
dimensional, and is without zero divisors.

In addition, if ¢ is a Lie algebra over a field and U(¥) is its enveloping algebra,
let U,(%) be the subspace of U(%) spanned by all the products of at most n factors
from %. This gives a well-known ascending filtration of U(%), and we can define the
degree of an element [ to be the least integer n such that / € U,(¥). This function
has the properties:

(1) deg(a + b) < max{deg(a),deg(b)},

(2) if deg(a) < deg(b) then deg(a + b) = deg(d),

(3) deg (ab) = deg (a) + deg (b).

In particular, if x € & is non-zero then the degree of x is 1, so if x1,x2,...,x, €% are
all non-zero then deg (x;x;---x,) = n.

Via the adjoint action, /7’ carries the structure of a U(L) module, and 7 acts trivially.

All modules will be right modules. Therefore, I/I’ is a U(L/I) module in a natural
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way. There is a well-known embedding of U(L/I) modules, the Magnus embedding,
described below, of I/I' into 6U(L) ®yy U(L/I). This embedding will be denoted
by ¢ : I/I' — 6U(L) ®yy U(L/T). The action of L on U(L) Qyy U(L/I) is by right
multiplication on the right-hand term.

The embedding can be defined in the following way. First define ¢:7 —
oU(L) Quy U(L/T) by ¢(x) = x ® 1. By using the Poincare-Birkhoff-Witt theorem,
and the structure it gives to U(L), it can be seen that this is a mapping of U(L)
modules, i.e. ¢(a-1l) = ¢(a)l. First we check the statement for elements of L. If / € L
then a-/ =[a,/] and ¢([a,!]) =[a,]1®1=(al —1la)®1=a® !l — IR a. However,
a=0in UL/T) so ¢(Ja,/])=a® | =(a® 1)l = ¢(a)l. Consider now the subalge-
bra 4 = {u € UL)|d(x - u) = ¢p(x)u ¥x € I'}. Since L C A4 then 4 = U(L), thus ¢ is
a U(L) module homomorphism.

It is left to show that ker =1I'. If x €I’ then x can be written as x = _[a;,b;],
a;,b; € I, so that ¢(x) =x®1 = > [a,5;]Q1 = > (a;b;i—bia;))®1 = > a;®b; —b; ®a;.
Since a;, b; €1 then their images in U(L/I) are 0 so that ¢(x) = 0. Therefore, I’ C ker ¢.
On the other hand, suppose x €ker ¢. Since U(L) is a free U(L) module with basis
{x;} where x; is a basis of L as a free Lie algebra, we have x® 1 = " x; ® f;, where,
since ¢p(x) = 0, f; = 0 in U(L/I). Let us denote by I the kernel of the mapping
U(L) — U(LJI), so that f; €. But | = U(L) = IU(L) and thus by the Poincare—
Birkhoff-Witt theorem this kernel is a free left and right U(L) module with a basis
that is a basis of / as a subalgebra of L. Therefore, f; = > w; ja; where a; are a basis
of I. It follows that x = ) x;w; ja;. Consider now the image of x,x, in I/I’. Since
I/I' is the commutative Lie algebra with a basis that is a basis of I as a subalgebra
of L, then £ = 3" A;a;, where 4; € k. In other words, x = 3 A;a; + w, we I'. But
since I’ Cker ¢ then we can assume x = ) A;a;. On the other hand, ¢(x) = 0 so
x = Y xw; a;. Since I is a free U(L) module with basis a; we have A=Y xwij,
but x; €6U(L), so A; = 0. Hence, x&I’, therefore ker¢p = I'.

Another proof of the fact that ker¢p = I’ can be found in [2, Section 8] as the
Magnus embedding is a special case of the derivations defined there.

Throughout the remainder of this paper I will be a proper non-zero ideal of L, and
n> 1 will be an integer.

3. An image of Hy(L/I" k)

Consider Hy(L/I",k). It is known (e.g. [7, p. 233]) that the analogue of the Hopf
formula for groups holds for Lie algebras. Therefore,

Hy(L/I", k) = I"/[I",L] = (I"/I"™) @y k.

We know from the SirSov—Witt theorem (see e.g. [6, p. 44]) that I is a free Lie
algebra. Hence I"/I"*! is, in a natural way, identifiable with the nth homogeneous
component of the free Lie algebra with basis that is a basis of I/I’ as a vecior space.
Since the free Lie algebra of a free module can be embedded in the tensor algebra
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over this module, the nth homogeneous component can be embedded into the n-fold
tensor product, i.e. /"/I""' can be embedded in ®"I/I’, where the tensor is over k.
Any unadomned tensor product below is to be taken to be over k. We need this embed-
ding to be a U(L/I') module homomorphism, and it is easy to see that this is indeed
the case when U(L/I) acts on /"/I"*! via the adjoint action, and on ®"I/I’ diagonally.
The module ®"J/I' can again can be embedded, through the Magnus embedding, into

ROUL) vy UL/)).

Tensoring this with & over L we get a mapping

Hy(L/I" k) = é1/1/®U(L)k — é@U(L) Quwy UL)) ®uuy k.

Since SU(L) is a free U(L) module, with a basis X that is a basis of L as a Lie
algebra, we can define for each x € X a projection, denoted p, : 6U(L)Qu ) U(L/I) —

----- n ot

(px1®"'®pxn®1)°¢

(f)x.,xz,...,x,, : Hz(L/I",k) - ®U(L/I) Ru(L) k.

Since I/I' — U(L/I)®8U(L) is an embedding, there exist elements a € I/I’ and x € X
such that under the Magnus embedding and the projection by x the image a = ¢, (a)
is non-zero. These elements will be put to use below.

4. Isomorphism of Hopf modules

As seen in the previous section the image of the multiplicator lies in (U(L/I) ®
UL/ ® U(L/) Quuy k. On the other hand, it is well known that the envelop-
ing algebra is a Hopf algebra, and the action with which this module is endowed is
consistent with the standard Hopf structure on U(L/I), which is the diagonal action.
We shall use the following notation for the structure of Hopf algebras and modules.
Let H be a Hopf algebra and M a Hopf module over H. The diagonal mapping of H
will be denoted by 4, and the s-fold application of 4 by 4, (by the co-associativity
of H the components on which we apply 4 each time do not matter). The co-unit
of H will be denoted by ¢ (also sometimes known as the augmentation). The antipode
map of H will be denoted by S. The usual action of H on M will be denoted by
multiplication on the right, and the co-action of M will be denoted by p. If A€ H then
A(h) will be written as A(h) = Y, K @ k, and A(K}) = S\ K @ Ky If meM
then p(m) =Y mi ® m..

It is known (see e.g. [4, p.15]) that for any Hopf algebra H and Hopf module M,
M~M ® H, where M' = {m € M|p(m) = m ® 1} with the isomorphism m —
S mi -S(m'i’,jl)® m’ljz, where this is actually a double sum on both i and j. It should
also be noted that M’®H is a trivial Hopf module, i.e. one for which (m®#)] = mRhl.
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If we now also tensor with & over H we will get
Mepk~M QH)Qpuk
However, since M’ @ H is a trivial (in the sense defined above) Hopf module we get
M@ukaM OH)Rpk~M @ (HRyk)=M.
The isomorphism is
m®1— ng -S(mY)y @ mi, ® 11— Zm{) - S(mi)e(mih) = mh - S(m)).

If we take M = W ® H with W any Hopf module, H acting with the diagonal
action and

p(w® h)=w® Ah),

then M’ = W @ k = W. In this case, if m = w® h then p(w ® h) = w® A(h) so
mi =w ® i, and m| = k. Therefore, the explicit form of the isomorphism is

wRh® 1 > (W h)ASH)).

However, we know that the image is in M’, so-we can apply 1 ® ¢ to the image and
not change it. Also if € H then from the definition of a Hopf algebra (1®¢)(4(h)) =
h® 1l

Therefore, the image is

(1®3s) [Z(w ® k) >A(s<h;>>]

=3 " (w® ek @ e)ASEIN] = Y _(w @ 1)(elh))S(hy) ® 1)
=(w®1)S(h) 1),
so the image in W is
wRh® 11— wS(h).

In our case we are interested in the module ®" H, so we can take W = Q" 'H
and the isomorphism will be

Mh® k1l —(hQh®: & hy1)4p—1(S(hy)).

5. Computations

We can now prove Theorem 1.1, i.e. show that H,(L/I",k) is not finitely gen-
erated by exhibiting an infinite number of elements of the multiplicator, whose im-
ages in ®"_1 U(L/I) are linearly independent. We shall deal with several cases. In
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each of them we shall construct elements of Hy(L/[",k) that have one parameter /,
where /€ U(L/I). In other words, we shall construct a k-linear map f : U(L/I) —
Hy(L/I" k) — ®"_1 U(L/I). 1t is obviously enough to show that ker f = & - 1 {since
U(L/I) is not finite dimensional). In other cases, we shall show that Im f* is not finite
dimensional by proving that it has elements of unbounded degree.

Recall the elements a € I/I’ and x € X such that @ = ¢,(«) was non-zero, and consider
all elements of the form [o-/,a,...,4] ® 1, where / is any element of 6U(L/I). Obvi-
ously, this element is in /”. Its image, using the mapping ¢y . . will be [al,a,...,a]®].
In other words, f(/) = [al,4,...,a]l ® 1. Note that if /€k -1 then f(/) =0 since in
that case [a - /,a] = 0. An easy induction shows that

[a,b,b,...,b]® 1 = Z(_l)i(" - l)ébgpané_ib@ 1,

where ®' b means b®b®---®b (i times). The referee points out that this formula is
known as the Cartan—-Weyl formula. Therefore, under the Hopf module isomorphism

i _ i n—2—i
F(=Y(-1y (" i 1) (®a®al ® a) An_1(S(a))

+(=1)""! (®a) A,—1(S(al)).
But S(al) = S(1)S(a) so 4,-1(S(al)) = 4,—1(S(1))4,-1(S(a)) and hence
= [ZH)‘ (" ; ‘) (éa ® al"?é'ia)
n—1
+(=1)"! (®a> An—l(S(l))] 4p—1(S(a)).
This can be rewritten as

teson g (') (e

+(=1y"! An—l(S(l)):l 4,1(8(a)).

Since U(L/I) is without zero divisors and we are only interested in ker f or the
dimension of Im f, we can consider instead the function

. - i n-—2—i
fy=3 -1y (" ,. 1) (®1 ®1 @ 1) + (1) o n(S(D)).

In order to compute ker f, we can apply ¢ to all but the jth coordinate of each
monomial. This operator, applied to ®'1® / ®"_27’ 1, yields 16;; (since &(!) = 0),
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while applied to A4,_1(S(/)) yields (because ¢ is a counit) S(/). Therefore, for each
0 < j < n the result is

(1) (" ; 1>l+ (=118 =0.

Therefore S(1) = (—1)"*/ (";‘) L.
If n>2 we get S(I) = (—1)" and S(!) = (=1)"t1(n — 1)L.
Therefore (—1)"] = (—1)"*(n — 1)1, i.e.

nl =0.

As was mentioned above, there are several cases.

Case 1. If char(k) does not divide » and n > 2 then for any [ € SU(L/I) we have
f(H#0,ie ker f=k-1.

Case 11: If char(k) # 2. We wish to show that Im f is not finite dimensional.
Denoting by f1(/) the application of ¢ to all but the first coordinate, we get f1(/) =
I + (—=1)""18(}). This is true also when » = 2. Since fj is simply f composed
with another function, obviously dim(Im f1) < dim(Im f). Therefore, it is enough to
consider f. However, if x is any non-zero Lie element in U(L/) then S(x') = (—1)x’.
So fi(x") = x' + (—=1)*"~1x’. Since char(k) # 2 then for all i of the correct parity we
will have fi(x') = 2x’ # 0, but degx’ = i will be unbounded, so we are finished.

Case 1II: The only case left is char(k) = 2 and » even. In this case we still have
Si(l) =1 — S(1). Suppose L/l is not commutative, therefore there exist x, y € L such
that [x,y] & I, i.e. [x,y] # 0 in U(L/I). Consider /; = xy'. Obviously, S(/;) = y'x,
so fi(l;) = xy' — ¥'x = [x,y']. However, the mapping u — [x,u] is a derivation of
U(L/T), and therefore

i1
e 31=Y_ ¥k )y~
j=0
Note that [x,y]y = y[x,y] + [[x,¥],y], and hence y/[x, y]»*~/~! = y'~![x, y] mod
U,—1(L/I). Thus, [x, '] = iy'~'[x, yJmod U;_(L/I), and if i is odd then deg fi(I;) = i.
Thus, the degree of the elements of the image is unbounded, so the image is infinite
dimensional.

Case IV: There remains the case where L/l is commutative. Thus, if L has basis X,
then L' C 1 so I/L' CL/L' is a subspace, and we can perform a linear change of basis
of L, so that I = (L', X)), where X7 is a proper subset of X. Consider the Lie algebra
over Z, Ly = (Y), I, = (L}, Y1), where Y and Y, are disjoint copies of X and X;.
We now use the universal coefficient theorem (see e.g. [3, p. 176]) which in our case
states that if £ is any Z module then

0 — Hy(L\/I}, Z) ®z k — Hy(Ly/I} ®z k, k) — Tor{(H(L\/I},Z),k) — 0
is exact. Since H\(Li/I},Z) = (Li/I{')a = L1/L} is a free Z module then
Tor{ (H(Ly/I}, Z),k) = 0.
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Take k= Q. We have Hy(Li/I],7) Rz Q = Hy(Li/I},®z Q, Q). However, L,/I}
®z Q is simply Ly/I§ where L, = (Y) and I, = (L},Y)) taken over Q. Since
Q has characteristic 0, we know that Hy(L;/I] ®z Q,Q) is infinite dimensional.
Therefore, H>(L1/I',Z) must also have infinite torsion-free rank as a Z-module. Ap-
ply now the universal coefficient theorem with k any field of characteristic 2. Again
Hy(L\/IT, Z)®zk =~ Hy(Li/I} ®zk, k). Once again L,/I}®zk is exactly L/I" of the orig-
inal Lie algebra. However, since H>(Li/I7,Z) has infinite rank then H,(L,/I],Z) ®z k
is not finitely generated, thus we have proved Theorem 1.1.

Note that in the case L = {x,y), / = L' and k is of characteristic 2, even though
H>(L/I' k) is not finitely generated, the image in U(L/I), under any of the projections,
will be 0.
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