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Abstract 

Let L be a free Lie algebra over a field k, I a non-trivial proper ideal of L, n > 1 an integer. 
The multiplicator Hz(L/I”,R) of L/I” is not finitely generated, and so in particular, L/Z” is not 
finitely presented, even when L/I is finite dimensional. @ 1998 Elsevier Science B.V. All rights 
reserved. 

1991 Math. Subj. Class.: Primary 17B55; secondary 20F05 

1. Introduction 

If R is a free associative algebra, over a field, and I is a two-sided ideal of R, then 

Lewin [5] proved that I2 is not finitely generated (as a two-sided ideal!) when the 

algebra R/I is infinite dimensional. In other words, R/I2 is not finitely presented in this 

case. On the other hand, it is easy to see that when R is finitely generated and R/I is 

finite dimensional, so is R/12, and hence I2 is finitely generated. 

Similar behavior is seen in groups. If F is a finitely generated free group, and R is 

a normal subgroup, then R’ is normally finitely generated if, and only if, F/R is finite. 

In fact, Baumslag et al. proved [l] a stronger fact. Denoting the mth member of the 

lower central series by y,,,, they proved that for m > 1 the Schur multiplier of F/y,R, 

Hz(F/y,R, Z), is not finitely generated (as an abelian group) if F/R is not finite. 

We note that for the three statements, 

(a) R is normally finitely generated, 

(b) R/R’ is finitely generated as a module over G = FIR, 

(c) H2(G, E) is finitely generated as an abelian group 

we have (a) + (b) + (c). 
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In this paper we prove a result of similar nature for Lie algebras. 

Theorem 1.1. Let L be a free Lie algebra with basis X, over a field k, and I be any 

non-zero proper ideal of L; then I’ = [I, I] is not finitely generated as an ideal. In 

fact, the “Schur multiplier” of L/I”, Hx(LJI”, k), is not finitely generated if n > 1, 

and hence L/I” is not finitely presented. 

Here I” denotes I, if n = 1, and [In-l, I] if n > 1. Our proof closely follows the 

lines of [l]. 

In Section 2 we define some notations and the Magnus embedding. In Section 3 

we build a mapping from the Schur multiplier into a tensor product of 12 - 1 copies 

of U(L/I). This is similar to the mapping defined in [l]. In Section 4 we build a 

specific isomorphism of Hopf modules, keeping in mind that the enveloping algebra 

of a Lie algebra is a Hopf algebra. In Section 5 we employ the mapping and show 

that the image of the “Schur multiplicator” is not finite dimensional, thus proving the 

theorem. 

2. Preliminaries and notations 

Let 9 be a Lie algebra. We will denote the Lie multiplication of two elements 

a, b E 3 by [a, b]. As we will also be considering the enveloping algebra of 9, the 

multiplication in U(9) will be denoted simply as ab, while the action of an element 

I E U(9) on an element a E 3 will be denoted by a . 1. Note that the action is the 

adjoint action, so that if I E L then a . I = [a, I]. 

Let 9 be a Lie algebra over a field k, U(‘3) its enveloping algebra, 6U(9) the 

augmentation ideal of U. Suppose 0 + I + L 4 9 + 0 is a free presentation of 9, 

where L is the free Lie algebra with basis X. The enveloping algebra, U(L), is therefore 

a free associative algebra, with basis X, and W(L) is a free U(L) module, with a basis 

in one-to-one correspondence with X. Note that over a field, if 99 # 0, U(3) is infinite 

dimensional, and is without zero divisors. 

In addition, if 9 is a Lie algebra over a field and U(3) is its enveloping algebra, 

let U,(3) be the subspace of U(9) spanned by all the products of at most n factors 

from 9. This gives a well-known ascending filtration of U(9), and we can define the 

degree of an element 1 to be the least integer n such that I E U,(9). This function 

has the properties: 

(1) deg (a + b) I mm{deg (a), dcg (b)}, 
(2) if deg(a) < deg(b) then deg(a + b) = deg(b), 

(3) deg (ab) = deg (a) + deg (b). 

In particular, if x E Y is non-zero then the degree of x is 1, so if x1,x2,. . . ,x, E 9 are 

all non-zero then deg (xix2 . . .x,) = n. 

Via the adjoint action, I/I’ carries the structure of a U(L) module, and I acts trivially. 

All modules will be right modules. Therefore, I/Z’ is a U(L/I) module in a natural 
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way. There is a well-known embedding of U(L/I) modules, the Magnus embedding, 

described below, of I/I’ into 6U(L) @U(L) U(L/I). This embedding will be denoted 

by 4 : I/I’ + 6U(L) &T(L) U(L/Z). The action of L on &Y(L) @U(L) U(L/Z) is by right 

multiplication on the right-hand term. 

The embedding can be defined in the following way. First define 4 : I -+ 
6U(L) aucL) U(L/I) by q&x) = x @ 1. By using the PoincareBirkhoff-Witt theorem, 

and the structure it gives to U(L), it can be seen that this is a mapping of U(L) 
modules, i.e. 4(a. I) = 4(a)/. First we check the statement for elements of L. If 1 E L 
then a . 1 = [a, I] and @([a, I]) = [a, I] @ 1 = (al - la) @ 1 = a @ I - I @ a. However, 

a = 0 in U(L/I) so @([a, I]) = a C$ 1 = (a ~2 1 )Z = &u)Z. Consider now the subalge- 

bra A = {U E U(L)l$(x . u) = c#@)u Vx E I}. S’ mce L CA then A = U(L), thus 4 is 

a U(L) module homomorphism. 

It is left to show that ker 4 = I’. If x E I’ then x can be written as x = C[ui,&], 

Ui,bi E I, SO that 4(X) =X@Jl = C[Ui,bi]@l = C(Uibi-biUi)@l = CUi@bi-bi@Ui. 

Since ai, bi ~1 then their images in U(L/Z) are 0 so that 4(x) = 0. Therefore, I’ c ker 4. 

On the other hand, suppose x E ker 4. Since dU(L) is a free U(L) module with basis 

{xi} where xi is a basis of L as a free Lie algebra, we have x @ 1 = C Xi @ fi, where, 

since 4(x) = 0, fi = 0 in U(L/Z). Let us denote by ? the kernel of the mapping 

U(L) -+ U(L/I), so that fi E I”. But ? = U(L)1 = W(L) and thus by the Poincare- 

Birkhoff-Witt theorem this kernel is a free left and right U(L) module with a basis 

that is a basis of I as a subalgebra of L. Therefore, fi = c wi,jaj where aj are a basis 

of I. It follows that x = Cxiwi,jaj. Consider now the image of x,X, in Z/I’. Since 

Z/Z’ is the commutative Lie algebra with a basis that is a basis of Z as a subalgebra 

of L, then X = C Ajaj, where J.j E k. In other words, x = C ijuj + W, w E I’. But 

since I’ c ker 4 then we can assume x = c 3Ljaj. On the other hand, 4(x) = 0 so 

x = C xiwi,jaj. Since 1 is a free U(L) module with basis ai we have Aj = Cxiwi,j, 

but xi E bU(L), so 2j = 0. Hence, x EI’, therefore ker 4 = I’. 

Another proof of the fact that ker q5 = I’ can be found in [2, Section 81 as the 

Magnus embedding is a special case of the derivations defined there. 

Throughout the remainder of this paper I will be a proper non-zero ideal of L, and 

n > 1 will be an integer. 

3. An image of H&?/Z”, k) 

Consider l&(L/Z”, k). It is known (e.g. [7, p. 2331) that the analogue of the Hopf 

formula for groups holds for Lie algebras. Therefore, 

Hz(L/Z”, k) = I”/[I”, L] = (P/P+’ ) @Q,(L) k. 

We know from the SirSov-Witt theorem (see e.g. [6, p. 441) that I is a free Lie 

algebra. Hence In/In+’ . is, in a natural way, identifiable with the nth homogeneous 

component of the free Lie algebra with basis that is a basis of I/I’ as a vector space. 

Since the free Lie algebra of a free module can be embedded in the tensor algebra 
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over this module, the nth homogeneous component can be embedded into the n-fold 

tensor product, i.e. In/In+’ can be embedded in @I/I’, where the tensor is over k. 

Any unadorned tensor product below is to be taken to be over k. We need this embed- 

ding to be a U(L/I) module homomorphism, and it is easy to see that this is indeed 

the case when U(L/I) acts on In/In+’ via the adjoint action, and on @I/,’ diagonally. 

The module @“IjI’ can again can be embedded, through the Magnus embedding, into 

t&J(L) @rJ(~) U(N)). 

Tensoring this with k over L we get a mapping 

Since 6U(L) is a free U(L) module, with a basis X that is a basis of L as a Lie 

algebra, we can define for each XEX a projection, denoted pn : GU(L)@u(r) U(L/I) -+ 

U(L/I). We therefore have for each n-tuple (x1,x2,. . .,x,) EX” a mapping 4x ,,_,., X,, := 

(Px, @ . . .@ Px,, @ 1)0&J 

h,,x, ,_._, n,, : fMW”,k) -+ &WW @u(L.) k. 

Since I/I’ + U(L/I)@tSU(L) is an embedding, there exist elements CXEI/I’ and x&Y 

such that under the Magnus embedding and the projection by x the image a = q&(a) 

is non-zero. These elements will be put to use below. 

4. Isomorphism of Hopf modules 

As seen in the previous section the image of the multiplicator lies in (U(L/I) @ 

U(L/I) . . . ~9 U(L/I)) @U(L) k. On the other hand, it is well known that the envelop- 

ing algebra is a Hopf algebra, and the action with which this module is endowed is 

consistent with the standard Hopf structure on U(LjI), which is the diagonal action. 

We shall use the following notation for the structure of Hopf algebras and modules. 

Let H be a Hopf algebra and A4 a Hopf module over H. The diagonal mapping of H 

will be denoted by A, and the n-fold application of A by A, (by the co-associativity 

of H the components on which we apply A each time do not matter). The co-unit 

of H will be denoted by E (also sometimes known as the augmentation). The antipode 

map of H will be denoted by S. The usual action of H on A4 will be denoted by 

multiplication on the right, and the co-action of M will be denoted by p. If h E H then 

A(h) will be written as A(h) = C:=, hi @ hi, and A(h’,) = CJE\ h$ 8 hy2. If m EM 

thenp(m)=Cmb@mmf. 

It is known (see e.g. [4, p.151) that for any Hopf algebra H and Hopf module M, 

A4 M M’ @,H, where M’ = {m E Mlp(m) = m @ 1) with the isomorphism m H 

C rnb . S(ml;;l, ) @ ml;‘,, where this is actually a double sum on both i and j. It should 

also be noted that M’@H is a trivial Hopf module, i.e. one for which (m@h)l = m@IzZ. 
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If we now also tensor with k over H we will get 

M@Hkz(M’@H)@Hk. 

However, since M’ @ H is a trivial (in the sense defined above) Hopf module we get 

M~Hk~((M’~H)~,Hk~:‘~(H~~k)~=‘. 

The isomorphism is 

If we take A4 = W 63 H with W any Hopf module, H acting with the diagonal 

action and 

p(w c3 h) = w 8 d(h), 

then M’ = W C% k M W. In this case, if m = w ~3 h then p(w @ h) = w @ d(h) so 

rn& = w @ hi and mf = hi. Therefore, the explicit form of the isomorphism is 

w@h@l -C( w 8 h;)d(S(h;)). 

However, we know that the image is in M’, so.we can apply 1 @a to the image and 

not change it. Also if ~EH then from the definition of a Hopf algebra (1 @&)(d(h)) = 

h@ 1. 

Therefore, the image is 

(1 8 E) c(w @ h;)d(S(h;)) 
I 

= c(w @ c(hf))[(l 8 c)(d(S(h;)))] = c(w @ l)(c(hf)S(h;) @ 1) 

= (w @ l)@(h) @ l), 

so the image in W is 

w @ h @ 1 H wS(h). 

In our case we are interested in the module @“H, so we can take W 

and the isomorphism will be 

hl 8 h2 @. . . @ h, @a 1 ++ (hl @ h2 ~3 . . @ h,-l)d,_l(S(h,)). 

5. Computations 

@-’ H 

We can now prove Theorem 1.1, i.e. show that Hl(L/I”, k) is not finitely gen- 

erated by exhibiting an infinite number of elements of the multiplicator, whose im- 

ages in @- ’ U(L/I) are linearly independent. We shall deal with several cases. In 
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each of them we shall construct elements of &(L/P,k) that have one parameter 1, 

where I E U(L/I). In other words, we shall construct a k-linear map f : U(L/Z) + 
&(L/Z”,k) + an-l U(L/Z). It is obviously enough to show that kerf = k . 1 (since 

U(L/I) is not finite dimensional). In other cases, we shall show that Im f is not finite 

dimensional by proving that it has elements of unbounded degree. 

Recall the elements (x EI/~’ and x EX such that a = &(a) was non-zero, and consider 

all elements of the form [a . I, a,. . . , a] ~$2 1, where I is any element of SU(L/I). Obvi- 

ously, this element is in I”. Its image, using the mapping &, ,.,_, x will be [al, a,. . . , a]@l. 

In other words, f(Z) = [a&a,. . . , a] ~8 1. Note that if I E k a 1 then f(Z) = 0 since in 

that case [a . 1, a] = 0. An easy induction shows that 

where @b means b@b@.. . @ b (i times). The referee points out that this formula is 

known as the Car-tan-Weyl formula. Therefore, under the Hopf module isomorphism 

f(l)=C(-l>’ n; l 
( >(’ 

gpa @ aln-&la d,_t(S(a)) 
.> 

n-l 
+(-l>“-’ @a d,_t(S(al)). 

( > 

But ,S(al) = s(Z)S(a) so A,_l(S(aZ)) = d,_l(S(l))d,_l(S(a)) and hence 

This can be rewritten as 

f(Z) = (a @ a C3 . . 4W CC-11 [ fr’) (&l@Fgil) 

+(- 1 Y-l A-t (S(z)) I &-ltSta)). 

Since U(L/I) is without zero divisors and we are only interested in ker f or the 

dimension of Im f, we can consider instead the function 

fv)=~w(“; ‘) ( t&l @ F-&Y ) + (-1)“~5i,_t(S(Z)). 

In order to compute ker f, we can apply E to all but the jth coordinate of each 

monomial. This operator, applied to 8’ 1 @ 1 @n-2-i 1, yields 16, (since E( 1) = 0), 
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while applied to d,_i(S(Z)) yields (because E is a counit) S(Z). Therefore, for each 

0 5 j < n the result is 

(-l)i n;l 
( > 

1 + (-1)?9(Z) = 0. 

Therefore S(Z) = (-l,,+j(‘y’)Z. 

If n > 2 we get S(Z) = (-I)“1 and S(Z) = (-l>“+‘(n - 1)Z. 

Therefore (-1)“Z = (-l)“+‘(, - l)Z, i.e. 

nz = 0. 

As was mentioned above, there are several cases. 

Case I: If char(k) does not divide n and n > 2 then for any 1 E &J(L/I) we have 

f(Z) # 0, i.e. kerf = k. 1. 

Case II: If char(k) # 2. We wish to show that Imf is not finite dimensional. 

Denoting by fi( I) the application of E to all but the first coordinate, we get fi( I) = 

Z + (- 1 )“-‘S(Z). This is true also when n = 2. Since fi is simply f composed 

with another function, obviously dim(Im fi) 5 dim(Im f). Therefore, it is enough to 

consider fi. However, if x is any non-zero Lie element in U(L/I) then S(x’) = (-1)‘~‘. 
So f&i) =.i+(-l)‘+“-’ i x . Since char(k) # 2 then for all i of the correct parity we 

will have fi(x’) = 2x’ # 0, but degx’ = i will be unbounded, so we are finished. 

Case III: The only case left is char(k) = 2 and n even. In this case we still have 

f,(Z) = Z - S(Z). Suppose L/I is not commutative, therefore there exist x, y EL such 

that [x,y] $ I, i.e. [x,y] # 0 in U(L/Z). Consider Zi = xy’. Obviously, S(Zi) = ylx, 

so fi( Zi) = xy’ - y’x = [x, y’]. However, the mapping u H [x, U] is a derivation of 

lJ(L/I), and therefore 

i-l 

[x, y’] = c yj [x, y] yi-j- ’ . 

j=O 

Note that [x, y]y = y[x, y] + [[x, y], y], and hence yj[x, y]y’-j-l = y’-‘[x, y] mod 

Ui_l(L/I). Thus, [x, y’] E iy’-‘[x, y] mod Ui-l(L/I), and if i is odd then degfi(Zi) = i. 

Thus, the degree of the elements of the image is unbounded, so the image is infinite 

dimensional. 

Case IV: There remains the case where L/I is commutative. Thus, if L has basis X, 

then L’ c I so I/L’ c L/L’ is a subspace, and we can perform a linear change of basis 

of L, so that I = (L’,Xl), where Xi is a proper subset of X. Consider the Lie algebra 

over E, L1 = (Y), 11 = (L’,,Yl), h w ere Y and Yi are disjoint copies of X and Xi. 

We now use the universal coefficient theorem (see e.g. [3, p. 1761) which in our case 

states that if k is any E module then 

0 --f Ih(Ll/Ip, Z) @z k -+ fh(Ll/Ir @Z k, k) --) Tor:(Hl(Ll/Z;,Z), k) + 0 

is exact. Since Hl(Ll/I;,Z) = (L,/Ir),, = Ll/L’, is a free Z module then 

Tar: (Hl(L1/Zf, Z), k) = 0. 
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Take k = Cl. We have Hz(Ll/ZF,Z) @,z Q M Hz(Ll/Zr, & Q, Q). However, LI&’ 

@Q Q is simply L*/Z; where L2 = (Y) and 12 = (Li, YI) taken over Q. Since 

Q has characteristic 0, we know that H~(LI/I~ 63~ CD, 0) is infinite dimensional. 

Therefore, H2(L1/Zr,72) must also have infinite torsion-free rank as a Z-module. Ap- 

ply now the universal coefficient theorem with k any field of characteristic 2. Again 

H2(Ll/I;,Z)&k M H2(LI/Z;Z@zk, k). Once again Ll/Ir&k is exactly L/I” of the orig- 

inal Lie algebra. However, since Hz(Lt/Z;, Z) has infinite rank then H2(L1/lr, Z) @z k 

is not finitely generated, thus we have proved Theorem 1.1. 

Note that in the case L = (x, v), Z = L’ and k is of characteristic 2, even though 

H2(L/I’,k) is not finitely generated, the image in U(L/I), under any of the projections, 

will be 0. 
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