

Journal of Pure and Applied Algebra 127 (1998) 105-112

JOURNAL OF PURE AND APPLIED ALGEBRA

Some non-finitely presented Lie algebras

Joseph Abarbanel, Shmuel Rosset*

Tel-Aviv University, Ramat-Aviv 69978, Israel

Communicated by C.A. Weibel; received 3 April 1996; revised 24 July 1996

Abstract

Let L be a free Lie algebra over a field k, I a non-trivial proper ideal of L, n > 1 an integer. The multiplicator $H_2(L/I^n, k)$ of L/I^n is not finitely generated, and so in particular, L/I^n is not finitely presented, even when L/I is finite dimensional. © 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: Primary 17B55; secondary 20F05

1. Introduction

If R is a free associative algebra, over a field, and I is a two-sided ideal of R, then Lewin [5] proved that I^2 is not finitely generated (as a two-sided ideal!) when the algebra R/I is infinite dimensional. In other words, R/I^2 is not finitely presented in this case. On the other hand, it is easy to see that when R is finitely generated and R/I is finite dimensional, so is R/I^2 , and hence I^2 is finitely generated.

Similar behavior is seen in groups. If F is a finitely generated free group, and R is a normal subgroup, then R' is normally finitely generated if, and only if, F/R is finite. In fact, Baumslag et al. proved [1] a stronger fact. Denoting the *m*th member of the lower central series by γ_m , they proved that for m > 1 the Schur multiplier of $F/\gamma_m R$, $H_2(F/\gamma_m R, \mathbb{Z})$, is not finitely generated (as an abelian group) if F/R is not finite.

We note that for the three statements,

(a) R is normally finitely generated,

(b) R/R' is finitely generated as a module over G = F/R,

(c) $H_2(G,\mathbb{Z})$ is finitely generated as an abelian group we have (a) \Rightarrow (b) \Rightarrow (c).

^{*} Corresponding author. E-mail: rosset@math.tau.ac.il.

In this paper we prove a result of similar nature for Lie algebras.

Theorem 1.1. Let L be a free Lie algebra with basis X, over a field k, and I be any non-zero proper ideal of L; then I' = [I, I] is not finitely generated as an ideal. In fact, the "Schur multiplier" of L/I^n , $H_2(L/I^n, k)$, is not finitely generated if n > 1, and hence L/I^n is not finitely presented.

Here I^n denotes I, if n = 1, and $[I^{n-1}, I]$ if n > 1. Our proof closely follows the lines of [1].

In Section 2 we define some notations and the Magnus embedding. In Section 3 we build a mapping from the Schur multiplier into a tensor product of n - 1 copies of U(L/I). This is similar to the mapping defined in [1]. In Section 4 we build a specific isomorphism of Hopf modules, keeping in mind that the enveloping algebra of a Lie algebra is a Hopf algebra. In Section 5 we employ the mapping and show that the image of the "Schur multiplicator" is not finite dimensional, thus proving the theorem.

2. Preliminaries and notations

Let \mathscr{G} be a Lie algebra. We will denote the Lie multiplication of two elements $a, b \in \mathscr{G}$ by [a, b]. As we will also be considering the enveloping algebra of \mathscr{G} , the multiplication in $U(\mathscr{G})$ will be denoted simply as ab, while the action of an element $l \in U(\mathscr{G})$ on an element $a \in \mathscr{G}$ will be denoted by $a \cdot l$. Note that the action is the adjoint action, so that if $l \in L$ then $a \cdot l = [a, l]$.

Let \mathscr{G} be a Lie algebra over a field k, $U(\mathscr{G})$ its enveloping algebra, $\delta U(\mathscr{G})$ the augmentation ideal of U. Suppose $0 \to I \to L \to \mathscr{G} \to 0$ is a free presentation of \mathscr{G} , where L is the free Lie algebra with basis X. The enveloping algebra, U(L), is therefore a free associative algebra, with basis X, and $\delta U(L)$ is a free U(L) module, with a basis in one-to-one correspondence with X. Note that over a field, if $\mathscr{G} \neq 0$, $U(\mathscr{G})$ is infinite dimensional, and is without zero divisors.

In addition, if \mathscr{G} is a Lie algebra over a field and $U(\mathscr{G})$ is its enveloping algebra, let $U_n(\mathscr{G})$ be the subspace of $U(\mathscr{G})$ spanned by all the products of at most *n* factors from \mathscr{G} . This gives a well-known ascending filtration of $U(\mathscr{G})$, and we can define the *degree* of an element *l* to be the *least* integer *n* such that $l \in U_n(\mathscr{G})$. This function has the properties:

(1) $\deg(a+b) \leq \max\{\deg(a), \deg(b)\},\$

(2) if $\deg(a) < \deg(b)$ then $\deg(a+b) = \deg(b)$,

(3) $\deg(ab) = \deg(a) + \deg(b)$.

In particular, if $x \in \mathscr{G}$ is non-zero then the degree of x is 1, so if $x_1, x_2, \ldots, x_n \in \mathscr{G}$ are all non-zero then deg $(x_1x_2 \cdots x_n) = n$.

Via the adjoint action, I/I' carries the structure of a U(L) module, and I acts trivially. All modules will be right modules. Therefore, I/I' is a U(L/I) module in a natural way. There is a well-known embedding of U(L/I) modules, the Magnus embedding, described below, of I/I' into $\delta U(L) \otimes_{U(L)} U(L/I)$. This embedding will be denoted by $\phi : I/I' \to \delta U(L) \otimes_{U(L)} U(L/I)$. The action of L on $\delta U(L) \otimes_{U(L)} U(L/I)$ is by right multiplication on the right-hand term.

The embedding can be defined in the following way. First define $\phi: I \rightarrow \delta U(L) \otimes_{U(L)} U(L/I)$ by $\phi(x) = x \otimes 1$. By using the Poincare-Birkhoff-Witt theorem, and the structure it gives to U(L), it can be seen that this is a mapping of U(L) modules, i.e. $\phi(a \cdot l) = \phi(a)l$. First we check the statement for elements of L. If $l \in L$ then $a \cdot l = [a, l]$ and $\phi([a, l]) = [a, l] \otimes 1 = (al - la) \otimes 1 = a \otimes l - l \otimes a$. However, a = 0 in U(L/I) so $\phi([a, l]) = a \otimes l = (a \otimes 1)l = \phi(a)l$. Consider now the subalgebra $A = \{u \in U(L) | \phi(x \cdot u) = \phi(x)u \ \forall x \in I\}$. Since $L \subset A$ then A = U(L), thus ϕ is a U(L) module homomorphism.

It is left to show that ker $\phi = I'$. If $x \in I'$ then x can be written as $x = \sum [a_i, b_i]$, $a_i, b_i \in I$, so that $\phi(x) = x \otimes 1 = \sum [a_i, b_i] \otimes 1 = \sum (a_i b_i - b_i a_i) \otimes 1 = \sum a_i \otimes b_i - b_i \otimes a_i$. Since $a_i, b_i \in I$ then their images in U(L/I) are 0 so that $\phi(x) = 0$. Therefore, $I' \subset \ker \phi$. On the other hand, suppose $x \in \ker \phi$. Since $\delta U(L)$ is a free U(L) module with basis $\{x_i\}$ where x_i is a basis of L as a free Lie algebra, we have $x \otimes 1 = \sum x_i \otimes f_i$, where, since $\phi(x) = 0$, $f_i = 0$ in U(L/I). Let us denote by \tilde{I} the kernel of the mapping $U(L) \to U(L/I)$, so that $f_i \in \tilde{I}$. But $\tilde{I} = U(L)I = IU(L)$ and thus by the Poincare– Birkhoff-Witt theorem this kernel is a free left and right U(L) module with a basis that is a basis of I as a subalgebra of L. Therefore, $f_i = \sum w_{i,j}a_j$ where a_j are a basis of I. It follows that $x = \sum x_i w_{i,j}a_j$. Consider now the image of x, \bar{x} , in I/I'. Since I/I' is the commutative Lie algebra with a basis that is a basis of I as a subalgebra of L, then $\bar{x} = \sum \lambda_j a_j$, where $\lambda_j \in k$. In other words, $x = \sum \lambda_j a_j + w$, $w \in I'$. But since $I' \subset \ker \phi$ then we can assume $x = \sum \lambda_j a_j$. On the other hand, $\phi(x) = 0$ so $x = \sum x_i w_{i,j}a_j$. Since \tilde{I} is a free U(L) module with basis a_i we have $\lambda_j = \sum x_i w_{i,j}$, but $x_i \in \delta U(L)$, so $\lambda_j = 0$. Hence, $x \in I'$, therefore ker $\phi = I'$.

Another proof of the fact that ker $\phi = I'$ can be found in [2, Section 8] as the Magnus embedding is a special case of the derivations defined there.

Throughout the remainder of this paper I will be a proper non-zero ideal of L, and n > 1 will be an integer.

3. An image of $H_2(L/I^n, k)$

Consider $H_2(L/I^n, k)$. It is known (e.g. [7, p. 233]) that the analogue of the Hopf formula for groups holds for Lie algebras. Therefore,

$$H_2(L/I^n, k) = I^n/[I^n, L] = (I^n/I^{n+1}) \otimes_{U(L)} k.$$

We know from the Širšov-Witt theorem (see e.g. [6, p. 44]) that I is a free Lie algebra. Hence I^n/I^{n+1} is, in a natural way, identifiable with the *n*th homogeneous component of the free Lie algebra with basis that is a basis of I/I' as a vector space. Since the free Lie algebra of a free module can be embedded in the tensor algebra

over this module, the *n*th homogeneous component can be embedded into the *n*-fold tensor product, i.e. I^n/I^{n+1} can be embedded in $\otimes^n I/I'$, where the tensor is over *k*. Any unadorned tensor product below is to be taken to be over *k*. We need this embedding to be a U(L/I) module homomorphism, and it is easy to see that this is indeed the case when U(L/I) acts on I^n/I^{n+1} via the adjoint action, and on $\otimes^n I/I'$ diagonally. The module $\otimes^n I/I'$ can again can be embedded, through the Magnus embedding, into

$$\bigotimes^{n} (\delta U(L) \otimes_{U(L)} U(L/I)).$$

Tensoring this with k over L we get a mapping

$$H_2(L/I^n,k) pprox \bigotimes^n I/I' \otimes_{U(L)} k o \bigotimes^n (\delta U(L) \otimes_{U(L)} U(L/I)) \otimes_{U(L)} k.$$

Since $\delta U(L)$ is a free U(L) module, with a basis X that is a basis of L as a Lie algebra, we can define for each $x \in X$ a projection, denoted $p_x : \delta U(L) \otimes_{U(L)} U(L/I) \rightarrow U(L/I)$. We therefore have for each *n*-tuple $(x_1, x_2, \ldots, x_n) \in X^n$ a mapping $\phi_{x_1, \ldots, x_n} := (p_{x_1} \otimes \cdots \otimes p_{x_n} \otimes 1) \circ \phi$

$$\phi_{x_1,x_2,\ldots,x_n}:H_2(L/I^n,k)\to\bigotimes^n U(L/I)\otimes_{U(L)}k$$

Since $I/I' \to U(L/I) \otimes \delta U(L)$ is an embedding, there exist elements $\alpha \in I/I'$ and $x \in X$ such that under the Magnus embedding and the projection by x the image $a = \phi_x(\alpha)$ is non-zero. These elements will be put to use below.

4. Isomorphism of Hopf modules

As seen in the previous section the image of the multiplicator lies in $(U(L/I) \otimes U(L/I)) \otimes U(L/I) \otimes$

It is known (see e.g. [4, p.15]) that for any Hopf algebra H and Hopf module M, $M \approx M' \otimes H$, where $M' = \{m \in M | \rho(m) = m \otimes 1\}$ with the isomorphism $m \mapsto \sum m_0^i \cdot S(m_{1,1}^{i,j}) \otimes m_{1,2}^{i,j}$, where this is actually a double sum on both *i* and *j*. It should also be noted that $M' \otimes H$ is a trivial Hopf module, i.e. one for which $(m \otimes h)l = m \otimes hl$. If we now also tensor with k over H we will get

$$M \otimes_H k \approx (M' \otimes H) \otimes_H k.$$

However, since $M' \otimes H$ is a trivial (in the sense defined above) Hopf module we get

$$M \otimes_H k \approx (M' \otimes H) \otimes_H k \approx M' \otimes (H \otimes_H k) \approx M'.$$

The isomorphism is

$$m \otimes 1 \mapsto \sum m_0^i \cdot S(m_{1,1}^{i,j}) \otimes m_{1,2}^{i,j} \otimes 1 \mapsto \sum m_0^i \cdot S(m_{1,1}^{i,j}) \varepsilon(m_{1,2}^{i,j}) = \sum m_0^i \cdot S(m_1^i).$$

If we take $M = W \otimes H$ with W any Hopf module, H acting with the diagonal action and

$$\rho(w\otimes h)=w\otimes \varDelta(h),$$

then $M' = W \otimes k \approx W$. In this case, if $m = w \otimes h$ then $\rho(w \otimes h) = w \otimes \Delta(h)$ so $m_0^i = w \otimes h_1^i$ and $m_1^i = h_2^i$. Therefore, the explicit form of the isomorphism is

$$w \otimes h \otimes 1 \mapsto \sum (w \otimes h_1^i) \Delta(S(h_2^i)).$$

However, we know that the image is in M', so we can apply $1 \otimes \varepsilon$ to the image and not change it. Also if $h \in H$ then from the definition of a Hopf algebra $(1 \otimes \varepsilon)(\Delta(h)) = h \otimes 1$.

Therefore, the image is

$$(1 \otimes \varepsilon) \left[\sum (w \otimes h_1^i) \Delta(S(h_2^i)) \right]$$

= $\sum (w \otimes \varepsilon(h_1^i)) [(1 \otimes \varepsilon) (\Delta(S(h_2^i)))] = \sum (w \otimes 1) (\varepsilon(h_1^i) S(h_2^i) \otimes 1)$
= $(w \otimes 1) (S(h) \otimes 1),$

so the image in W is

 $w \otimes h \otimes 1 \mapsto wS(h).$

In our case we are interested in the module $\bigotimes^n H$, so we can take $W = \bigotimes^{n-1} H$ and the isomorphism will be

$$h_1 \otimes h_2 \otimes \cdots \otimes h_n \otimes 1 \mapsto (h_1 \otimes h_2 \otimes \cdots \otimes h_{n-1}) \Delta_{n-1}(S(h_n)).$$

5. Computations

We can now prove Theorem 1.1, i.e. show that $H_2(L/I^n, k)$ is not finitely generated by exhibiting an infinite number of elements of the multiplicator, whose images in $\bigotimes^{n-1} U(L/I)$ are linearly independent. We shall deal with several cases. In

each of them we shall construct elements of $H_2(L/I^n, k)$ that have one parameter l, where $l \in U(L/I)$. In other words, we shall construct a k-linear map $f: U(L/I) \to$ $H_2(L/I^n, k) \to \bigotimes^{n-1} U(L/I)$. It is obviously enough to show that ker $f = k \cdot 1$ (since U(L/I) is not finite dimensional). In other cases, we shall show that Im f is not finite dimensional by proving that it has elements of unbounded degree.

Recall the elements $\alpha \in I/I'$ and $x \in X$ such that $a = \phi_x(\alpha)$ was non-zero, and consider all elements of the form $[\alpha \cdot l, \alpha, ..., \alpha] \otimes 1$, where l is any element of $\delta U(L/I)$. Obviously, this element is in I^n . Its image, using the mapping $\phi_{x,x,...,x}$ will be $[al, a, ..., a] \otimes 1$. In other words, $f(l) = [al, a, ..., a] \otimes 1$. Note that if $l \in k \cdot 1$ then f(l) = 0 since in that case $[a \cdot l, a] = 0$. An easy induction shows that

$$[a,b,b,\ldots,b]\otimes 1=\sum(-1)^i\binom{n-1}{i}\bigotimes^i b\otimes a\bigotimes^{n-1-i}b\otimes 1,$$

where $\bigotimes^i b$ means $b \otimes b \otimes \cdots \otimes b$ (*i* times). The referee points out that this formula is known as the Cartan–Weyl formula. Therefore, under the Hopf module isomorphism

$$f(l) = \sum (-1)^{i} {\binom{n-1}{i}} \left(\bigotimes^{i} a \otimes al \bigotimes^{n-2-i} a \right) \Delta_{n-1}(S(a))$$
$$+ (-1)^{n-1} \left(\bigotimes^{n-1} a \right) \Delta_{n-1}(S(al)).$$

But S(al) = S(l)S(a) so $\Delta_{n-1}(S(al)) = \Delta_{n-1}(S(l))\Delta_{n-1}(S(a))$ and hence

$$f(l) = \left[\sum_{i=1}^{n-1} \binom{n-1}{i} \left(\bigotimes^{i} a \otimes al \bigotimes^{n-2-i} \bigotimes^{i} a \right) + (-1)^{n-1} \left(\bigotimes^{n-1} \bigotimes d_{n-1}(S(l)) \right] d_{n-1}(S(a)).$$

This can be rewritten as

$$f(l) = (a \otimes a \otimes \dots \otimes a) \left[\sum (-1)^{l} \binom{n-1}{l} \left(\bigotimes^{i} 1 \otimes l \bigotimes^{n-2-i} 1 \right) + (-1)^{n-1} \Delta_{n-1}(S(l)) \right] \Delta_{n-1}(S(a)).$$

Since U(L/I) is without zero divisors and we are only interested in ker f or the dimension of Im f, we can consider instead the function

$$f(l) = \sum (-1)^{i} \binom{n-1}{i} \left(\bigotimes^{i} 1 \otimes l \bigotimes^{n-2-i} 1 \right) + (-1)^{n-1} \Delta_{n-1}(S(l))$$

In order to compute ker f, we can apply ε to all but the *j*th coordinate of each monomial. This operator, applied to $\bigotimes^{i} 1 \otimes l \bigotimes^{n-2-i} 1$, yields $l\delta_{ij}$ (since $\varepsilon(l) = 0$),

while applied to $\Delta_{n-1}(S(l))$ yields (because ε is a counit) S(l). Therefore, for each $0 \le j < n$ the result is

$$(-1)^{j} \binom{n-1}{j} l + (-1)^{n-1} S(l) = 0.$$

Therefore $S(l) = (-1)^{n+j} {\binom{n-1}{l}} l$.

If n > 2 we get $S(l) = (-1)^n l$ and $S(l) = (-1)^{n+1}(n-1)l$.

Therefore $(-1)^n l = (-1)^{n+1}(n-1)l$, i.e.

nl = 0.

As was mentioned above, there are several cases.

Case I: If char(k) does not divide n and n > 2 then for any $l \in \delta U(L/I)$ we have $f(l) \neq 0$, i.e. ker $f = k \cdot 1$.

Case II: If char(k) $\neq 2$. We wish to show that Im f is not finite dimensional. Denoting by $f_1(l)$ the application of ε to all but the first coordinate, we get $f_1(l) = l + (-1)^{n-1}S(l)$. This is true also when n = 2. Since f_1 is simply f composed with another function, obviously dim(Im f_1) \leq dim(Im f). Therefore, it is enough to consider f_1 . However, if x is any non-zero Lie element in U(L/I) then $S(x^i) = (-1)^i x^i$. So $f_1(x^i) = x^i + (-1)^{i+n-1}x^i$. Since char(k) $\neq 2$ then for all i of the correct parity we will have $f_1(x^i) = 2x^i \neq 0$, but deg $x^i = i$ will be unbounded, so we are finished.

Case III: The only case left is char(k) = 2 and n even. In this case we still have $f_1(l) = l - S(l)$. Suppose L/I is not commutative, therefore there exist $x, y \in L$ such that $[x, y] \notin I$, i.e. $[x, y] \neq 0$ in U(L/I). Consider $l_i = xy^i$. Obviously, $S(l_i) = y^i x$, so $f_1(l_i) = xy^i - y^i x = [x, y^i]$. However, the mapping $u \mapsto [x, u]$ is a derivation of U(L/I), and therefore

$$[x, y^{i}] = \sum_{j=0}^{i-1} y^{j} [x, y] y^{i-j-1}.$$

Note that [x, y]y = y[x, y] + [[x, y], y], and hence $y^{j}[x, y]y^{i-j-1} \equiv y^{i-1}[x, y] \mod U_{i-1}(L/I)$. Thus, $[x, y^{i}] \equiv iy^{i-1}[x, y] \mod U_{i-1}(L/I)$, and if *i* is odd then deg $f_{1}(l_{i}) = i$. Thus, the degree of the elements of the image is unbounded, so the image is infinite dimensional.

Case IV: There remains the case where L/I is commutative. Thus, if L has basis X, then $L' \subset I$ so $I/L' \subset L/L'$ is a subspace, and we can perform a linear change of basis of L, so that $I = \langle L', X_1 \rangle$, where X_1 is a proper subset of X. Consider the Lie algebra over \mathbb{Z} , $L_1 = \langle Y \rangle$, $I_1 = \langle L'_1, Y_1 \rangle$, where Y and Y_1 are disjoint copies of X and X_1 . We now use the universal coefficient theorem (see e.g. [3, p. 176]) which in our case states that if k is any \mathbb{Z} module then

$$0 \to H_2(L_1/I_1^n, \mathbb{Z}) \otimes_{\mathbb{Z}} k \to H_2(L_1/I_1^n \otimes_{\mathbb{Z}} k, k) \to \operatorname{Tor}_1^{\mathbb{Z}}(H_1(L_1/I_1^n, \mathbb{Z}), k) \to 0$$

is exact. Since $H_1(L_1/I_1^n, \mathbb{Z}) = (L_1/I_1^n)_{ab} = L_1/L_1'$ is a free \mathbb{Z} module then

$$\operatorname{Tor}_{1}^{\mathbb{Z}}(H_{1}(L_{1}/I_{1}^{n},\mathbb{Z}),k)=0$$

Take $k = \mathbb{Q}$. We have $H_2(L_1/I_1^n, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q} \approx H_2(L_1/I_1^n, \otimes_{\mathbb{Z}} \mathbb{Q}, \mathbb{Q})$. However, $L_1/I_1^n \otimes_{\mathbb{Z}} \mathbb{Q}$ is simply L_2/I_2^n where $L_2 = \langle Y \rangle$ and $I_2 = \langle L'_2, Y_1 \rangle$ taken over \mathbb{Q} . Since \mathbb{Q} has characteristic 0, we know that $H_2(L_1/I_1^n \otimes_{\mathbb{Z}} \mathbb{Q}, \mathbb{Q})$ is infinite dimensional. Therefore, $H_2(L_1/I_1^n, \mathbb{Z})$ must also have infinite torsion-free rank as a \mathbb{Z} -module. Apply now the universal coefficient theorem with k any field of characteristic 2. Again $H_2(L_1/I_1^n, \mathbb{Z}) \otimes_{\mathbb{Z}} k \approx H_2(L_1/I_1^n \otimes_{\mathbb{Z}} k, k)$. Once again $L_1/I_1^n \otimes_{\mathbb{Z}} k$ is exactly L/I^n of the original Lie algebra. However, since $H_2(L_1/I_1^n, \mathbb{Z})$ has infinite rank then $H_2(L_1/I_1^n, \mathbb{Z}) \otimes_{\mathbb{Z}} k$ is not finitely generated, thus we have proved Theorem 1.1.

Note that in the case $L = \langle x, y \rangle$, I = L' and k is of characteristic 2, even though $H_2(L/I', k)$ is not finitely generated, the image in U(L/I), under any of the projections, will be 0.

Acknowledgements

We wish to thank Alon Wasserman for his help in Section 4.

References

- [1] G. Baumslag, R. Strebel and M. Thomson, On the multiplicator of $F/\gamma_c R$, J. Pure Appl. Algebra 16 (1980) 121–132.
- [2] G. Bergman and W. Dicks, On universal derivations, J. Algebra 36 (1975) 193-211.
- [3] P.J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, Vol. 4 (Springer, Berlin, 1971).
- [4] S. Montgomery, Hopf algebras and their actions on rings, Regional Conf. Series in Mathematics, Vol. 82 (American Mathematical Society, Providence, RI, 1992).
- [5] J. Lewin, On some infinitely presented associative algebras, J. Austr. Math. Soc. 16 (1973) 290-293.
- [6] C. Reutenauer, Free Lie Algebras, London Math. Soc. Monographs New Series, Vol. 7 (Oxford Univ. Press, Oxford, 1993).
- [7] C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Math., Vol. 38 (Cambridge Univ. Press, Cambridge, 1994).